Friday, June 6, 2008

Cold Fusion Part-2

THE PROCESS BEHIND COLD FUSION

There is no fully developed model for cold fusion yet. The hypothesis behind the phenomenon is however very simple: All particles behave according to quantum mechanical laws. These laws say that the coordinates and energy state of a particle at one point in time determine the probability of finding a particle at a place with some given coordinates at another point of time, but the exact place cannot be predicted. Actually, a particle can be found anywhere at that other time point, but all places do not have the same probability. Some places are very probable, and others are very improbable. Because of this, even a particle that is not in any net motion nevertheless will shift place randomly to some extend, usually very little, but sometimes more.
By bringing particles and nuclei very near each other by using some force, this will happen: The quantum mechanical behavior will as always make the particles shift their position more or less all the time, and sometimes they get near enough to let the strong nuclear forces to take action and make them fuse.

According to standard understanding of the standard theory, this cannot happen in such a degree to be detected. Still it does. Either the standard theory is not complete, or one has not learned to use the theory in a right fashion. The mathematical apparatus of the theory is so complicated, that it is impossible to predict what can happen and what cannot happen with a short glance at the equations. Cold fusion differs in many aspects from warm fusion. It is difficult to produce warm fusion of other things than one deuterium and one tritium kernel. By cold fusion, two deuterium kernels easily fuse to helium, and even fusion involving hydrogen kernels (free protons) have been reported. Output of neutrons (n), tritium (T), protons (p) and gamma radiation has been reported by cold fusion, but not in the amount predicted by standard understanding. These are the reactions that standard understanding predicts when two deuterium kernels fuse: D + D --> 3He + n, D + D --> T + p, D + D --> 4He + gamma photon.

No comments: