Friday, June 6, 2008

Cold Fusion Part-1

In 1989 the chemistry professors Stanley Pons and Martin Fleishman reported that they had achieved cold fusion in a palladium anode emerged in a solution of sodium deuteroxide in heavy water D2O. Due to a bad exactness of their report, only few other scientists managed to replicate their findings in the first place. The findings were then dismissed as due to misunderstandings and bad scientific practice, and the matter of cold fusion has since been regarded as a taboo area. However, some scientists did manage to replicate the findings, and quietly an enormous amount of positive research findings based on experiments of a lot better quality have been published. The phenomenon is again becoming accepted as a legitimate field of research by steadily more scientists. However, what is really going on is not well understood. Heat production, detected radiation and detected fusion products suggest that some kind of nuclear reaction or fusion takes place, but the reactions do not show the amount of radiation and the ratios of products that known hot fusion reactions do. Therefore other names of the phenomenon are often used, like Low Energy Nuclear Reactions or (LENR) or Chemically Assisted Nuclear Reactions (CANR).

WHAT IS FUSION

By fusion two or more atomic nuclei, protons or neutrons fuse together to form a new atomic nucleus. The new nucleus is held together by the strong forces between the heavy particles, protons and neutrons. These forces are so strong that they win over the repulsing electromagnetic forces between protons. However, the strong forces only work at a short distance. Therefore the nucleons (neutrons and protons) must be brought very close together. This is difficult because of the repulsing electromagnetic forces between the protons. In traditional fusion this is achieved by very high pressure and temperature in the fusing material.

The mass of a helium nucleus (consisting of two protons and two neutrons) and other light nuclei are less than the mass of the same number of free protons, neutrons or deuterium nuclei. A deuterium nucleus consists of one proton and one neutron. Heavy water contains deuterium instead of ordinary hydrogen and is therefore designed D2O. When fusion takes place, this mass difference cannot be lost. It is converted to kinetic energy and gamma radiation. Therefore fusion of protons, neutrons or kernels of the very lightest elements into heavier elements is a very potent energy source. One has not been able to make a controlled fusion by high temperature and pressure that yields more energy than the input energy yet. The only practical way one has managed to exploit the energy from warm fusion is the hydrogen bomb.

No comments: